32 research outputs found

    Dynamic message-passing equations for models with unidirectional dynamics

    Full text link
    Understanding and quantifying the dynamics of disordered out-of-equilibrium models is an important problem in many branches of science. Using the dynamic cavity method on time trajectories, we construct a general procedure for deriving the dynamic message-passing equations for a large class of models with unidirectional dynamics, which includes the zero-temperature random field Ising model, the susceptible-infected-recovered model, and rumor spreading models. We show that unidirectionality of the dynamics is the key ingredient that makes the problem solvable. These equations are applicable to single instances of the corresponding problems with arbitrary initial conditions, and are asymptotically exact for problems defined on locally tree-like graphs. When applied to real-world networks, they generically provide a good analytic approximation of the real dynamics.Comment: Final versio

    Online Learning of Power Transmission Dynamics

    Full text link
    We consider the problem of reconstructing the dynamic state matrix of transmission power grids from time-stamped PMU measurements in the regime of ambient fluctuations. Using a maximum likelihood based approach, we construct a family of convex estimators that adapt to the structure of the problem depending on the available prior information. The proposed method is fully data-driven and does not assume any knowledge of system parameters. It can be implemented in near real-time and requires a small amount of data. Our learning algorithms can be used for model validation and calibration, and can also be applied to related problems of system stability, detection of forced oscillations, generation re-dispatch, as well as to the estimation of the system state.Comment: 7 pages, 4 figure

    Learning Energy-Based Representations of Quantum Many-Body States

    Full text link
    Efficient representation of quantum many-body states on classical computers is a problem of enormous practical interest. An ideal representation of a quantum state combines a succinct characterization informed by the system's structure and symmetries, along with the ability to predict the physical observables of interest. A number of machine learning approaches have been recently used to construct such classical representations [1-6] which enable predictions of observables [7] and account for physical symmetries [8]. However, the structure of a quantum state gets typically lost unless a specialized ansatz is employed based on prior knowledge of the system [9-12]. Moreover, most such approaches give no information about what states are easier to learn in comparison to others. Here, we propose a new generative energy-based representation of quantum many-body states derived from Gibbs distributions used for modeling the thermal states of classical spin systems. Based on the prior information on a family of quantum states, the energy function can be specified by a small number of parameters using an explicit low-degree polynomial or a generic parametric family such as neural nets, and can naturally include the known symmetries of the system. Our results show that such a representation can be efficiently learned from data using exact algorithms in a form that enables the prediction of expectation values of physical observables. Importantly, the structure of the learned energy function provides a natural explanation for the hardness of learning for a given class of quantum states
    corecore